Work, Power and Energy Transfer – Questions and Answers

Amy Harris 

Task 1

Packing cases of mass 25kg are to be pushed onto a ramp by use of a hydraulic ram as shown above. The coefficients of static and dynamic friction between the box and surface are 0.7 and 0.4 respectively. Assuming uniform acceleration at all stages.

Calculate:

a) The maximum force required in the ram to push the crate onto the slope with an acceleration of 0.25ms

b) The velocity of the crate as it leaves the top part of the ramp assuming this part of the movement takes 1 second.

c) The velocity of the crate at the bottom of the ramp

d) The distance travelled after leaving the ramp and continuing in a straight line (assume a smooth curve at the bottom of the slope).

e) The total time for the entire movement of the crate.

Corrections to Task 1:

Task 2

A pile driver hammer of mass 300kg is raised to a height of 3.5m before being released. If there is no rebound after impact with a pile of mass 500kg and the pile is driven 0.1m into the ground, Calculate:

a) The initial potential energy of the hammer before release.

b) The velocity of the hammer immediately before impact

c) The velocity of the hammer and pile immediately after impact

d) The deceleration of the pile assuming it is uniform

e) The ground resistance

Corrections to Task 2:

Task 3

Find the velocity of the hammer immediately before impact for the problem given in Q2 above using D’Alembert’s Principle and write a report comparing it with the conservation of energy method previously used.

How do the two methods differ and what were the discrepancies in the results?

The D’Alembert’s Principle can; in some parts, be very similar to the second law motion which Newton introduced. He thought that the law could be rewritten so that we can achieve the appearance of an equilibrium. This principle was made by Jean le Rond d’Alembert, he was a French mathematician in the 18th century. It is explained as reducing ‘a problem in dynamics to a problem in statics’ (The Editors of Encyclopaedia Britannica, 2016). I found that when referring to ‘the time derivatives of the momenta of the system‘ (Wikipedia, June 2016) D’Alembert’s principle shows this equation F-ma=0′ (The Editors of Encyclopedia Britannica, 2016). I researched this formula and found that ‘F=ma'(classes R., no date) and newtons second law states that ‘F= mg’ (Kearsley, no date) This means that when no external force is present we may use the formula mg-ma=0. D’alemberts principle is different to the conservation of energy method as d’alemberts uses the equilibrium of forces when referring to a dynamic system and the conservation of energy method states that in a closed dynamic system the energy total equals zero. They may differ sometimes as they are dealing with different values to come out with the answer, also aspects such as human error when rounding comes into play as a small rounding error can sometimes affect the answer. The conservation of energy method is used more than the that of D’Alembert’s, perhaps because it is not often that a system is balanced completely which is when D’Alembert’s is used.

The answer I got is the same as I do with the other method, this shows that this method can be used to prove the answer found in task 2.      

Bibliography

References:

Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our Guarantees

Money-back Guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism Guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision Policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy Policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation Guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more