This chapter covers the introduction to packet classification. Problems for packet classification, objectives to overcome the problem involved in packet classification, motivation to do the project on packet classification and also the organization of the project.
The development of the internet grows for every year, because of the easy access of the internet. The gain of the internet can be obtained through the smartphones, netbooks, notebooks. For processing the packets, network processor is used, and it will carry out the tasks as to convert the packets into fragments, reassembling these fragments, forwarding, encryption and packet classification. Due to increased line rates, pressure is increased on line rates and it in turn pressure on network processor. The pressure can be relieved in two ways:
So that it can be relieved in two different ways:
The network traffic is doubling for each six to nine months. Also traditional algorithms are not supporting the increasing network traffic on core and edge devices.
The thesis contains 6 chapters
Chapter 1, it will covers the introduction of packet classification, problems involved in packet classification, objective to the packet classification and motivation for choosing the packet classification.
Chapter 2, it will covers the basics of existing packet classification and also the basics of proposed packet classification.
Chapter 3, it will covers the method used to do the packet classification, proposed architecture and also it tells how proposed architecture is better compared to previous algorithms.
Chapter 4, it discusses the simulation the simulation results obtained for existing and proposed architecture of the classifier.
Chapter 5, it covers the conclusion and future scope of the project.
Chapter 6, It lists the reference papers used for literature review of the packet classification.
It covers the basics of packet classification. It also explains the structure of packet header, brief introduction to internet, the mode of information transmission through the internet, OSI layers, the type of matching, software and hardware implementation of packet classification , Clock gating and pipelining are also discussed. It also covers the review of different packet classification algorithms, by reading this the user can select the algorithm, which is best suit for his application.
The internet is a global system. It is consists of inter connected computer networks, which uses the protocols(TCP/IP), to match several billion devices all over the world. It is also termed as networks of network. Access of internet is a process of connecting mobile devices, computers and computer terminals to the internet. Internet access will enables the users to access the internet services such as email and world wide web. Using various technologies, internet service providers will access the internet. A packet is a formatted unit of data, which is carried by the packet switched network. By formatting of the data, the bandwidth of communication medium can be increased. The structure of the packet contains the two varieties of data
This will provide the information, on where to send the data. Example, It provides the source and destination IP addresses, sequencing information and error codes. Fig 2.1 shows the structure of the packet
Fig 2.1 structure of the packet
The maximum size of the packet is 64 K bytes. The payload of the packet is variable. Example IPV4 typically adds the 20 bytes of payload to every packet. The packet is passed through the network using three devices such as hub, switch and router.
Hub is a central device, for which all other devices are connected. It is called the star system. It is very simple, when any device sends the data, it will send the data to all other devices and all other devices needs to decide whether the data is belonging to them, if it is not belonging to them, they will ignore it. It will present in physical layer. Fig 2.3.1 shows the structure of the hub.
.
Fig 2.3.1 shows the structure of the hub
The switch is smarter compared to hub. First it creates the table, which records the IP/MAC addresses of the devices(PC’s) connected together. At the start, when any device sends the data, that time switch will not be knowing the destination IP addresses. So it will forwards the packets to all other devices, which are connected to it and it also records the IP address of the device. Next when packet belonging to those destination IP addresses comes, it will directly forward the packets to destination devices It is present in data link layer of OSI layer. Fig 2.3.2 shows the structure of the switch.
It is the smartest device compared to hub and switch. The router will record the address of all the devices which are connected to it. The router will read the information present in packet header and it will decide , where the packet needs to be sent and how to process the packet. It provides the security. While in hub, switch the destination IP address is known, hacker may hack the destination device, it will consider both destination and source IP address of the devices and it will decide whether the source device is hacker or not. If it is hacker, it will deny the packet. Fig 2.3.3 shows the structure of router.
Fig 2.3.3 shows the structure of router.
It consist of seven layer
The Fig 2.4 for OSI model is shown below as
Fig 2.4 OSI layers
Application layer: This layer will provide the interface to application programmes.
Presentation layer:
Session layer:
Transport layer:
The responsibility of transport layer are:
Network layer:
Data link layer:
Physical layer:
UDP: User datagram protocol
It is light weight and connectionless.
Advantages:
UDP header- 8 bytes
TCP header- 20 bytes
Disadvantages:
Transmission control Protocol:
It is reliable and connection based.
Advantages:
Disadvantages:
UDP is message oriented
Ex: Email.
TCP is stream oriented
Ex: Phone conversation.
Ex: File transfers, Remote access.
In physical layer, information is transmitted in bit stream using hub. In data link layer information is transmitted in frames using switches. In network layer information is transmitted in packets using router. A router is a device that forwards the packet. A router is connected between two networks namely LAN’s or WAN’s. network processors are specialized CPU, which is optimized to support the implementation of network protocols at maximum speed. The function of network processor is to carry out the tasks such as packet separation, reassembly, encryption and classification. Packet classification is the process of categorizing the packets into flows in internet router. Packet will be classified in network layer. Packet has five fields as shown in fig
The incoming packet to router will matches the specific rule if the distinct field in the packet will match corresponding field in the rule. There are three matches
Packet classification algorithm can be implemented in two major types
This can be used with general purpose processor and network processor. The software based algorithm can be divided into two types as
Field Independent Algorithm: For each field in the rule, these algorithms will build the index table separately.
Ex: RFC
Field dependent Algorithm: In these algorithm, the fields of the rule will be matched in dependent manner and there is no need to group the result in final stage. The memory requirement for these algorithms is less than field independent algorithms.
Ex: Hypercut, Hicut
This is used with ASIC or with FPGA. This implementation is used with internet routers for the high speed that supports to handle the packet.
The reasons to use software implementation
The proposed algorithm uses clock gating circuit to reduce power consumption and pipelining to increase the speed.
Clock gating is a technique, which is used in synchronous circuits to minimize the power consumption. This technique is used to prune the clock, it disables the port of the circuitary, so that flip flops present in the circuitry will not switch the states. When switching is absent, the dynamic power consumption is reduced, but the leakage currents are present. Clock gating works by taking the enable signal of the circuitry, so that flip flops or devices present in latches will not switch the states, so that switching power reduces. So it is necessary to have enable conditions in order to get benefit from clock gating. The clock gating saves the power. Clock gating can be added in two ways:
It is group of data processing elements, which are connected in series, so that output of one element is the input to next element. We build a pipeline by dividing the complex operation into simple operation. Here instead of taking bulk thing and executing it, the bulk thing is break up into smaller pieces and process it one after another.
For example Consider a calculation c= log(|a+b|), which consist of three operations, which are shown in fig 2.7.
Fig 2.7 Pipelining example
Consider a situation when we need to carry out for 100 such pairs. Without pipelining , it would take a total of 100*135= 13500ns. By realization, it is found that it is whole sequential process. Let the values evaluated to be a1 to a100 and we need to add values to be b1 to b100.
In first evaluation, ( a1+b1)is calculated, In next evaluation, |a1+b1|,(a2+b2) is calculated, in third evaluation log|a1+b1|,|a2+b2|, ( a3+b3) is evaluated. After the first output data that is log|(a1+b1)|, the subsequent outputs are log|(a2+b2)|, log|(a3+ b3)| will now start arriving at a gap of 60ns . All the 100 inputs can be applied in 199*60=5940ns and the total time taken to evaluate 100 data will be 5940+180= 6120ns. This time is half compared without pipelining. This process of evaluation is called pipelinlng.
Algorithms are classified in 4 classes:
a. Linear search: This algorithm[1], is very simple. It contains all the rules. Here each packet is matched opposite to all the rules until the corresponding fields of the packet should match to the rule. Although, it is simple, it is not widely used. Because, it takes the large time for matching with the rule. Consider N is the number of rules, “the worst case space and time complexity is O(N),where O is the order and N is the number of rules. Fig below shows the linear structure.
Fig 2.8.1.a Linear search algorithm
b. Hierarchial trie: It is an extension part of the binary trie. By using the individual bits of the search key, the branches of the trie can be traversed. In the d dimensional hierarchial trie[2], first bulid the one dimensional hierarchial trie which is called F1 trie. Foe each prefix P in the F1 trie, there is a recursively (d-1) dimensional hierarchial tries are present(Tp). For example, if the data structure is 2 dimensional the only one F1 trie is present. Hierarchial tries are also termed as multilevel tries or backtracking tries or tries of trie.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more